Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36973621

RESUMO

Removal of water pollutants (methylene blue dye and heavy metals) was achieved by zinc/manganese-doped nickel ferrites (Ni1 - xMxFe2O4, where x = 0.00, 0.025, 0.10). Degradation of dye was achieved under natural solar light illumination. Degradation studies of dye were conducted under different parameters such as contact time-80 min, dye's concentration-5 mg/L, pH-7, and dosage of ferrites-15 mg. The adsorption of dye was studied using non-linear kinetics models (pseudo-first-order and pseudo-second-order) and isotherm models (Langmuir and Freundlich). The adsorption of dye followed pseudo-first-order kinetics (R2 = 0.99377) than second-order kinetics (R2 = 0.98063) and Langmuir isotherm model (R2 = 0.96095) than Freundlich model (R2 = 0.95962) with maximum adsorption efficiency of 29.62 mg/g. Doping of nickel ferrites caused an increase in the removal percentage of methylene blue dye (80 to 90%) and inorganic effluents (75 to 95% for lead and 47 to 82% for cadmium). In addition to this, band gap energy (2.43 to 3.26 eV) (UV-Vis spectroscopy), pore radius (65.2 to 74.8 A°), and specific surface area (16.45 to 27.95 m2/g) (BET analysis) were also increased. Generally, the results of the study revealed that synthesized nanoparticles can act as potential candidate for the removal of effluents from wastewater under optimum parameters along with recyclability, reusability, and separation under the influence of a magnetic field.

2.
Funct Integr Genomics ; 23(2): 86, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36930418

RESUMO

Globally, industrial farming endangers crucial ecological mechanisms upon which food production relies, while 815 million people are undernourished and a significant number are malnourished. Zero Hunger aims to concurrently solve global ecological sustainability and food security concerns. Recent breakthroughs in molecular tools and approaches have allowed scientists to detect and comprehend the nature and structure of agro-biodiversity at the molecular and genetic levels, providing us an advantage over traditional methods of crop breeding. These bioinformatics techniques let us optimize our target plants for our soil-less medium and vice versa. Most of the soil-borne and seed-borne diseases are the outcomes of non-treated seed and growth media, which are important factors in low productivity. The farmers do not consider these issues, thereby facing problems growing healthy crops and suffering economic losses. This study is going to help the farmers increase their eco-friendly, chemical residue-free, quality yield of crops and their economic returns. The present invention discloses a synergistic soil-less medium that consists of only four ingredients mixed in optimal ratios by weight: vermicompost (70-80%), vermiculite (10-15%), coco peat (10-15%), and Rhizobium (0-1%). The medium exhibits better physical and chemical characteristics than existing conventional media. The vermiculite to coco peat ratio is reduced, while the vermicompost ratio is increased, with the goals of lowering toxicity, increasing plant and water holding capacity, avoiding drying of the media, and conserving water. The medium provides balanced nutrition and proper ventilation for seed germination and the growth of seedlings. Rhizobium is also used to treat the plastic bags and seeds. The results clearly show that the current synergistic soil-less environment is best for complete plant growth. Securing genetic advantages via sexual recombination, induced random mutations, and transgenic techniques have been essential for the development of improved agricultural varieties. The recent availability of targeted genome-editing technology provides a new path for integrating beneficial genetic modifications into the most significant agricultural species on the planet. Clustered regularly interspaced short palindromic repeats and associated protein 9 (CRISPR/Cas9) has evolved into a potent genome-editing tool for imparting genetic modifications to crop species. In addition, the integration of analytical methods like population genomics, phylogenomics, and metagenomics addresses conservation problems, while whole genome sequencing has opened up a new dimension for explaining the genome architecture and its interactions with other species. The in silico genomic and proteomic investigation was also conducted to forecast future investigations for the growth of French beans on a synergistic soil-less medium with the purpose of studying how a blend of vermicompost, vermiculite, cocopeat, and Rhizobium secrete metal ions, and other chemical compounds into the soil-less medium and affect the development of our target plant as well as several other plants. This interaction was studied using functional and conserved region analysis, phylogenetic analysis, and docking tools.


Assuntos
Sistemas CRISPR-Cas , Solo , Humanos , Proteômica , Fome , Filogenia , Genoma de Planta , Melhoramento Vegetal/métodos , Produtos Agrícolas/genética , Genômica
3.
Funct Integr Genomics ; 23(1): 57, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752963

RESUMO

The agricultural sector and environmental safety both work hand in hand to promote sustainability in important issues like soil health, plant nutrition, food safety, and security. The conventional methods have greatly harmed the environment and people's health and caused soil fertility and quality to decline as well as deteriorate. Keeping in view the excessive exploitation and cascade of degradation events due to unsustainable farming practices, the need of the hour demands choosing an appropriate, eco-friendly strategy to restore soil health, plant nutrition, and environmental aspects. The priority highlights a need for a sustainable and environment-friendly upgradation of the present agricultural systems to utilize the beneficial aspects related to harnessing the gene-microbiome strategies which would help in the restoration and replenishment of the microbial pool. Thus, exploring the microbiome is the utmost priority which gives a deep insight into the different aspects related to soil and plant and stands out as an important contributor to plant health and productivity. "Microbes" are important drivers for the biogeochemical cycles and targets like sustainability and safety. This essential microbial bulk (soil microbiome) is greatly influenced by agricultural/farming practices. Therefore, with the help of microbiome engineering technologies like meta-transcriptomics, meta-proteomics, metabolomics, and novel gene-altering techniques, we can easily screen out the highly diverse and balanced microbial population in the bulk of soil, enhancing the soil's health and productivity. Importantly, we need to change our cultivation strategies to attain such sustainability. There is an urgent need to revert to natural/organic systems of cultivation patterns where the microbiome hub can be properly utilized to strengthen soil health, decrease insect pest and disease incidence, reduce greenhouse gas emissions, and ultimately prevent environmental degradation. Through this article, we wish to propose a shift in the cultivation pattern from chemical to the novel, upgraded gene-assisted designed eco-friendly methodologies which can help in incorporating, exploring, and harnessing the right microbiome consortium and can further help in the progression of environmentally friendly microbiome technologies for agricultural safety and productivity.


Assuntos
Agricultura , Microbiota , Humanos , Agricultura/métodos , Solo , Plantas , Microbiologia do Solo , Tecnologia
4.
Int J Biol Macromol ; 212: 451-464, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35618089

RESUMO

Antibiotics have been a source of concern since they are causing resistance in bacteria that live in water and air. As a result, green technology was used to manufacture silver and copper nanoparticles, which were encapsulated with the biopolymer chitosan derived from the root extract of the Potentilla astrosanguinea plant. XRD, FTIR, TEM, EDX, and UV-Visible spectroscopy were methods used for structural and spectroscopic analysis. These nanomaterials have a roughly spherical 2-30 nm average size and a face-centered cubic (FCC) shape, according to the findings. The photocatalytic drug degradation and antibacterial properties of the produced nanocomposites were outstanding, with some resistance lasting longer than 180 days. The current study discovered that under UV light exposure, silver nanocomposites degrade drugs rapidly within 40 min, with an average rate of over 95%, while copper nanocomposites degrade drugs rapidly within 70 min, with an average rate of 84%. These nanocomposites have demonstrated exceptionally compelling antibacterial action against Gram-positive, Gram-negative, and fungal pathogens in addition to photocatalytic activity. The lowest recorded MIC values were 10.30 µg/mL and 10.84 µg/mL, respectively, whereas the lowest MBC values were 91.24 µg/mL and 99.50 µg/mL.


Assuntos
Quitosana , Nanopartículas Metálicas , Nanocompostos , Antibacterianos/química , Antibacterianos/farmacologia , Cefuroxima/análogos & derivados , Quitosana/química , Cobre , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Nanocompostos/química , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...